Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage
نویسندگان
چکیده
The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO(2)). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) (f < 0.1 Hz), detectable by functional imaging methods, are determined by the brain's resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel 'functional marker' for progressive ischaemia.
منابع مشابه
Advances in the understanding of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage
Delayed cerebral ischaemia has been described as the single most important cause of morbidity and mortality in patients who survive the initial aneurysmal subarachnoid haemorrhage. Our understanding of the pathophysiology of delayed cerebral ischaemia is meagre at best and the calcium channel blocker nimodipine remains the only intervention to consistently improve functional outcome after aneur...
متن کاملCortical Spreading Ischaemia and Delayed Ischaemic Neurological Deficits after Subarachnoid Haemorrhage
متن کامل
The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage.
Cerebral vasospasm has traditionally been regarded as an important cause of delayed cerebral ischaemia (DCI) which occurs after aneurysmal subarachnoid haemorrhage, and often leads to cerebral infarction and poor neurological outcome. However, data from recent studies argue against a pure focus on vasospasm as the cause of delayed ischaemic complications. Findings that marked reduction in the i...
متن کاملSerum concentration of adhesion molecules in patients with delayed ischaemic neurological deficit after aneurysmal subarachnoid haemorrhage: the immunoglobulin and selectin superfamilies.
OBJECTIVES Adhesion molecules are involved in the pathogenesis of cerebral ischaemia and may play a part in the pathophysiology of delayed ischaemic neurological deficit (DIND) after aneurysmal subarachnoid haemorrhage. It was hypothesised that after aneurysmal subarachnoid haemorrhage, adhesion molecules may play a part in the pathophysiology of DIND as reflected by significantly altered serum...
متن کاملDelayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm.
Despite improvements in the clinical management of aneurysmal subarachnoid haemorrhage over the last decade, delayed cerebral ischaemia (DCI) remains the single most important cause of morbidity and mortality in those patients who survive the initial bleed. The pathological mechanisms underlying DCI are still unclear and the calcium channel blocker nimodipine remains the only therapeutic interv...
متن کامل